PostHeaderIcon KPZ scaling theory for integrable exclusion processes

    Az esemény címe:
    KPZ scaling theory for integrable exclusion processes

Az esemény műfaja:
Előadás

Tudományterület:
Matematika

Kezdés: 
2014. November 20. 16:15

Befejezés:
2014. November 20. 17:00 

Program:
Guillaume Barraquand (Laboratoire de Probabilités et Modèles Aléatoires) Absztrakt: KPZ scaling theory for integrable exclusion processes. (BME Sztochasztika szeminárium)

The KPZ scaling theory provides a general method to compute all model-dependent constants arising in limit theorems for a large class of exclusion processes. The validity of this heuristic approach is rigorously proved only for a few exactly solvable models. In this talk, we will discuss how the theory applies for q-deformed exclusion processes introduced by Borodin-Corwin and Povolotsky : The q-TASEP and the q-Hahn TASEP. We will also introduce a two-sided generalization of the q-Hahn TASEP that preserve the integrable structure and further confirm KPZ scaling theory. This is a joint work with Ivan Corwin.

Szervező intézmények:
A BME Matematikai Intézet 

Helyszínek:
BME, H épület, 306

Régió: 
Közép-Magyarország

Kapcsolattartó:
Gabor Pete, robagetep@gmail.com

Az esemény honlapja:
http://www.math.bme.hu/sztoch/stoch_seminar/szsze.php

Szinopszis:
KPZ scaling theory for integrable exclusion processes.
The KPZ scaling theory provides a general method to compute all model-dependent constants arising in limit theorems for a large class of exclusion processes. The validity of this heuristic approach is rigorously proved only for a few exactly solvable models. In this talk, we will discuss how the theory applies for q-deformed exclusion processes introduced by Borodin-Corwin and Povolotsky : The q-TASEP and the q-Hahn TASEP. We will also introduce a two-sided generalization of the q-Hahn TASEP that preserve the integrable structure and further confirm KPZ scaling theory. This is a joint work with Ivan Corwin.

 

Tudomány Ünnepe 2014