PostHeaderIcon Random walk on hyperbolic unimodular triangulations and circle packing

    Az esemény címe:
    Random walk on hyperbolic unimodular triangulations and circle packing

Az esemény műfaja:
Előadás

Tudományterület:
Matematika

Kezdés: 
2014. November 13. 16:15

Befejezés:
2014. November 13. 17:00 

Program: 
BME Sztochasztika Szeminarium. Gourab Ray: Random walk on hyperbolic unimodular triangulations and circle packing. Abstract: We investigate the behaviour of random walk on the circle packing of a hyperbolic unimodular triangulations. A way to relate the geometry of such graphs with random walks is via circle packing: one can draw non-intersecting circles on the plane, one for each vertex and circles touch each other if and only if their vertices are adjacent. We show that such a triangulation can be packed in the unit disc and the unit circle gives a pretty accurate description of the final behaviour of the simple random walk on it. Joint work with Omer Angel, Tom Hutchcroft and Asaf Nachmias.

Szervező intézmények:
BME Matematikai Intézet

Helyszínek:
BME, H épület 306

Régió: 
Közép-Magyarország

Kapcsolattartó:
Gabor Pete robagetep@gmail.com

Az esemény honlapja:
http://www.math.bme.hu/sztoch/stoch_seminar/szsze.php

Szinopszis:
Title: Random walk on hyperbolic unimodular triangulations and circle packing.
Abstract: We investigate the behaviour of random walk on the circle packing of a hyperbolic unimodular triangulations. A way to relate the geometry of such graphs with random walks is via circle packing: one can draw non-intersecting circles on the plane, one for each vertex and circles touch each other if and only if their vertices are adjacent. We show that such a triangulation can be packed in the unit disc and the unit circle gives a pretty accurate description of the final behaviour of the simple random walk on it. Joint work with Omer Angel, Tom Hutchcroft and Asaf Nachmias

 

Tudomány Ünnepe 2014